Two rigidity theorems on manifolds with Bakry-Emery Ricci curvature

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalue Comparison on Bakry-emery Manifolds

It is called shrinking, steady, or expanding soliton if a > 0, a = 0 or a < 0 respectively. More generally (M, g, f) is called a Bakry-Emery manifold if the so-called Bakry-Emery Ricci tensor Rcij + fij ≥ agij for some a ∈ R. In this paper we apply the modulus of continuity estimates developed in [AC,AC2,AC3] to give a different proof of an eigenvalue comparison estimate on Bakry-Emery manifold...

متن کامل

Rigidity Theorems for Compact Manifolds with Boundary and Positive Ricci Curvature

We sketch the idea of the proof. We glue M with RnB along the boundary S 1 to obtain an asymptotically ‡at manifoldN with nonnegative scalar curvature. Since it is actually ‡at near in…nity the positive mass theorem implies that N is isometric to R and hence M is isometric to Bn (see [M, ST] for details). There are similar rigidity results for geodesic balls in the hyperbolic space assuming R n...

متن کامل

Rigidity of Compact Manifolds with Boundary and Nonnegative Ricci Curvature

Let Ω be an (n + 1)-dimensional compact Riemannian manifold with nonnegative Ricci curvature and nonempty boundary M = ∂Ω. Assume that the principal curvatures of M are bounded from below by a positive constant c. In this paper, we prove that the first nonzero eigenvalue λ1 of the Laplacian of M acting on functions on M satisfies λ1 ≥ nc2 with equality holding if and only if Ω is isometric to a...

متن کامل

Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds

The aim of the present paper is to bridge the gap between the Bakry-Émery and the Lott-Sturm-Villani approaches to provide synthetic and abstract notions of lower Ricci curvature bounds. We start from a strongly local Dirichlet form E admitting a Carré du champ Γ in a Polish measure space (X,m) and a canonical distance dE that induces the original topology of X. We first characterize the distin...

متن کامل

Some Rigidity Theorems for Finsler Manifolds of Sectional Flag Curvature

In this paper we study some rigidity properties for Finsler manifolds of sectional flag curvature. We prove that any Landsberg manifold of non-zero sectional flag curvature and any closed Finsler manifold of negative sectional flag curvature must be Riemannian.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 2009

ISSN: 0386-2194

DOI: 10.3792/pjaa.85.71